

Process Accessing Library (PAL):
An Approach to Interprocess

Communication

by Steven G. Betten

ARL-CR-470 May 2001

prepared by

Steven G. Betten
University of Maryland
College Park, MD 20742

under contract

DAAD17-00-P-0960

Approved for public release; distribution is unlimited.

Approved for public release; distribution is unlimited.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5067

ARL-CR-470 May 2001

Process Accessing Library (PAL):
An Approach to Interprocess
Communication

Steven G. Betten
University of Maryland

Abstract

 Interprocess communication is a topic of study in the high performance computing
community because of its applications in runtime analysis and code coupling. Existing
approaches to such communication include sockets, message passing, shared memory,
and distributed shared memory. Proposed is a “process accessing” approach in which a
program directly accesses desired data in the working memory of another program.
This approach has its origins in debugger programs, which access the working memory
of the program they are debugging. Major benefits of the process accessing model are
that it provides access to computational results without pausing computations, it uses a
minimal amount of memory, and it requires only trivial modifications to the
computational code in order to access its working memory. The process accessing
library (PAL) is an implementation of the process accessing approach.

 iii

Acknowledgments

I would like to acknowledge the suggestions and support of Jerry Clarke,
Dr. Raju Namburu, Dr. Andrew Mark, Charles Nietubicz, Dr. N. Radhakrishnan, and
the members of the Scientific Visualization Team, all of the U.S. Army Research
Laboratory, Aberdeen Proving Ground, MD. Further, I would like to acknowledge the
support of Professor Jeff Hollingsworth of the University of Maryland, College Park.

 iii

INTENTIONALLY LEFT BLANK.

 iv

Contents

Acknowledgments iii

List of Tables vii

1. Introduction 1

2. Approaches 1
2.1 Sockets..1
2.2 Message Passing ...2
2.3 Shared Memory ..2
2.4 Distributed Shared Memory ...2
2.5 Process Accessing With PAL ..2

3. Comparisons 3
3.1 General Application of Each Approach ..3
3.2 Encapsulation..4
3.3 Extensibility...4
3.4 Intermediate Storage: Data Format, Memory Usage, and Memory
Access...4
3.5 Computation Suspension: Data Integrity, Computation Duration, and
Data Transfer Rates ..5

4. Conclusion 6

5. References 7

Appendix. Listing of PAL 9

Distribution List 11

Report Documentation Page 13

 v

INTENTIONALLY LEFT BLANK.

 vi

List of Tables

Table 1. Average transfer rates. ...6

 vii

INTENTIONALLY LEFT BLANK.

 viii

1. Introduction

The U.S. Army Research Laboratory (ARL) is interested in the task of sharing data
between executing programs. Applications of this concept include runtime analysis and
code coupling. In runtime analysis, the goal is to provide the ability to analyze or
visualize the progress of an executing computational code. The aim of code coupling is
to combine two existing codes so that they cooperatively solve a problem by sharing
results. Existing interprocess communication models for these applications include
sockets, message passing, shared memory, and distributed shared memory. Proposed is
a “process accessing” approach in which a program directly accesses the working
memory of another program from which it desires data. The process accessing library
(PAL) is an implementation of this last model. Major benefits of the process accessing
model are that it provides access to computational results without pausing the code, it
uses a minimal amount of memory, and it requires only trivial modifications to a
computational code in order to access its working memory.

2. Approaches

Runtime analysis and code coupling are major fields of study in high performance
computing. There are a couple of benefits of having runtime analysis capabilities. One
benefit is the ability to steer the direction of a computation while it proceeds. Another
benefit is the savings in processing time that one gains from stopping execution as soon
as further computation becomes unnecessary. Code coupling has been gaining
momentum as a technique for solving complex computational problems because using
multiple codes to solve a problem allows each specialized code to focus on the aspect of
the problem at which it excels. Existing approaches to runtime analysis and code
coupling include sockets, message passing, shared memory, and distributed shared
memory. PAL embodies the process accessing approach.

2.1 Sockets
A common way to share data between two programs is by sockets. Sockets are
supported at the system level, and they allow fast, bidirectional, first-in first-out
communication of raw data between programs running on a single computer or on
multiple computers on a network. When using sockets, one must be weary of the
potential of overrunning the buffer and corrupting data that is being transferred.

 1

2.2 Message Passing
From the user point of view, message passing is similar to sockets except that message
passing provides some features that are especially helpful for programming large-scale
parallel programs. For example, message passing makes it easy to establish many
connections at once, and it also always ensures that no data is corrupted during transfer
between programs. Packages exist that integrate computational codes and runtime
analyzers using message passing. One such package is pV3 [1], which utilizes the
parallel virtual machine (PVM) [2] to allow runtime visualization. It is also possible to
use message passing to couple certain computational codes. The message passing
interface (MPI) standard provides the ability to execute multiple codes in the same
communication sphere, allowing messages to travel between them [3]. There are also
products that facilitate the coupling of certain MPI-based codes (e.g., reference [4]).

2.3 Shared Memory

The most intuitive way to share data between programs is to have them share memory.
Support for sharing unstructured blocks of memory exists at the system level [5]. The
system-level support includes simple locking mechanisms.

2.4 Distributed Shared Memory
Distributed shared memory software extends the shared memory model by giving the
appearance of shared memory but actually spreading memory usage across multiple
computers on a network and using sockets to communicate between the computers (e.g.,
references [6, 7]). The distributed interactive computing environment (DICE) is
distributed shared memory software that supports runtime analysis by having the
computational code periodically write its results to a section of shared memory called
the DICE object directory (DOD) [8]. Analysis programs then access the results in the
DOD. When they are coupled by way of DICE, computational codes exchange results
via the DOD.

2.5 Process Accessing With PAL
PAL has applications in runtime analysis and code coupling. For runtime analysis, only
the analysis program uses PAL and its accessing features, whereas in code coupling,
both codes use PAL to access each other’s data. Major benefits of the process accessing
model, relative to other approaches, are that it provides access to computational results
without needing to pause the code, it decreases the amount of memory used, and it
requires minimal modifications to the computational code. It is best to use the process
accessing model when both programs are running on the same computer.

 2

PAL is written in C++ and provides many helpful object-oriented abstractions of system
and programming concepts, such as processes, process groups, and global variables.
The Appendix includes the listing of the example program PAD, which is written in
C++ and uses PAL to access a parallel MPI program written in C. Typical usage of PAL
by a program is as follows (accessor denotes the program that uses PAL; accessee
denotes the program that PAL accesses).

(1) The accessor creates a process group, which represents the process or processes
that are executing the accessee.
The user specifies the path of the accessee and whether it is a scalar program or
an MPI-based parallel program. If there is more than one instance of the accessee
running, the user provides a process id to uniquely identify the desired group.
PAL creates handles to the process or processes in that group. Also, PAL scans
the accessee code and stores the name and location of each C and C++ global
variable and each Fortran77 and Fortran90 common block variable.

(2) Via the process group, the accessor acquires handles to each desired variable of
the accessee.
If PAL fails to automatically create a handle to desired data, it is possible to
manually create a variable by supplying a name and an offset.

(3) The accessor uses the variable handles to read and write accessee variable values.
PAL provides functions to access primitive types, such as integers, floating-point
numbers, and characters, and to access contents of arrays and other pointer-
based data structures. All of these functions require arguments specifying the
accessee process to access, the data buffer to use, and the number of bytes to
transfer; an offset into the accessee variable is optional. Data transfers occur
directly between the working memory of the accessee and the working memory
of the accessor.

3. Comparisons

3.1 General Application of Each Approach
Sockets are useful for simple, fast communication between two programs. The forte of
message passing is its ease of programming and reliability for distributed, parallel
programs. The shared memory model is generally the most intuitive model with which
to program because it provides direct access to data that is uniform in every program,
but it requires more work to maintain data integrity than with message passing.
Distributed shared memory allows the use of the shared memory model on distributed
systems. The process accessing model is best for scalar and parallel programs that run
on a single machine and for which execution speed, memory usage, or minimal code
modification are the principal concerns.

 3

3.2 Encapsulation
One point of comparison is how much the accessor needs to know about the internal
data format of the accessee (i.e., how well encapsulated the data of the accessee is). It
can be difficult to synchronize advanced data structures, such as C++ classes, across
multiple, asynchronous accesses with shared memory because shared memory libraries
usually do not support encapsulation. An advantage of using message passing is that
exchange between programs occurs via a standard interface, so message passing
programs do not need to concern themselves with each other’s internal data
representations. MPI permits users to define and transfer data structures that are
composites of primitive types, allowing programs to easily communicate complex data.
Employing the process accessing model imposes the need of accessors to fully know the
internal data representation of accessees.

3.3 Extensibility
Another consideration is extensibility, defined here as the ease with which one can
couple an analysis or computational program to an existing code. Shared memory
systems are generally extensible, as any program that supplies the correct key can access
the shared memory that the code is using. With PAL, any program with the correct user
id can access the working memory of the code. In both of these cases, it is usually a
fairly straightforward matter to attach an analysis program because such attachments do
not necessarily require any changes to the computational code. Coupling codes using
shared memory would require adding synchronization to the computational code in
order to maintain data integrity. The changes needed to couple codes using the process
accessing model would depend on the type of coupling. It might be that only one code,
the consumer, uses data from the other, the producer, in which case it would only be
necessary to ensure that the producer provides global access to its computational results
and to modify the consumer so that it acquires data by way of PAL. On the other hand,
if both codes require data from each other, then both must make their computational
data globally available and use PAL to access the data of the other code. Extension is
more difficult with sockets and message passing, since the computational code would
have to initiate the transfer of all data that the analysis program or other computational
code would require. For the sake of extensibility, shared memory would probably be
most preferable, with process accessing being just as viable with respect to runtime
analysis.

3.4 Intermediate Storage: Data Format, Memory Usage, and Memory Access
In some situations, data format and memory usage can be concerns. A common
procedure, one that DICE uses, is for computational codes to place a copy of their results
into shared memory in a more-accessible format [8]. This procedure increases memory
usage but facilitates data interchange with other programs. Another benefit of this
technique is that accessors to code results will go to the copy of the code results and will
not compete with accesses by the code to its working memory. PAL saves memory by

 4

transferring data directly between the working memories of the accessor and accessee.
However, working with the data in the working memory of the accessee could be
frustrating if the internal data format of the accessee is complicated. Also, accesses by
multiple programs to the working memory of the computational code might
significantly inhibit the execution speed of the code. Using sockets incurs the memory
overhead of buffers for transferring messages, without necessarily providing a common
interface for data interchange. Message passing also requires buffer overhead, but at
least all message passing programs use a common format for data exchange.

3.5 Computation Suspension: Data Integrity, Computation Duration, and
Data Transfer Rates

There is a tradeoff in all the approaches to interprocess communication between data
integrity and computation duration. For the purposes of this discussion, data is integral
if it is all from the same iteration, and it is not integral otherwise. Computation duration
is the time that a specific computational code takes to make all its computations for a
given problem. The most straightforward way to ensure data integrity is to periodically
suspend computations between iterations and to copy or send the data to another
location from which other programs can read the data. On the other hand, if the code
continues to compute as the accessor reads from it, the accessor data will likely be a
mixture of results from more than one iteration. In many cases, the change in data
between iterations is small enough that such an error is negligible and does not warrant
any suspension of computations. One of the intended uses of PAL is to read data
continually from executing code so that its users can acquire frequent and reasonably
accurate updates without prolonging the computation duration. Sometimes, as in the
case of DICE, transfers directly between the code and shared memory are faster than
accesses via PAL. It appears that transfers via PAL are slower because PAL is unable to
access the working memory of the code using mmap and memcpy as DICE does; instead,
PAL accesses the computational working memory through the process file system using
the less efficient open, seek, read, and write functions. The downside of stopping the code
during computation is that it will take longer to carry out its computations. Using
nonblocking, persistent communications minimizes time spent on communication for
the message passing approach.

If minimizing computation duration and maximizing ease of data accessibility are both
substantial concerns and data integrity and memory usage are not as important, then at
least one hybrid approach exists. That is, have a PAL-based program continually extract
data from the computational code, convert that data to a more accessible format, and
store it in shared memory.

Table 1 contains data on average transfer rates between programs on an SGI Origin 2000
for the different approaches to sharing data between programs. The break at 4 MB is
sometimes significant because the cache size of SGI Origin 2000 systems is 4 MB.

 5

Table 1. Average transfer rates.

 Transfers
≤ 4 MB (MB/s)

Transfers
> 4 MB (MB/s)

Shared Memory
(NDGM) 400 120

Socket
(ttcp) 140 140

Message Passing
(MPI, persistent) 90 80

Process Accessing
(PAL) 110 80

4. Conclusion

There are many tradeoffs in the use of PAL, and process accessing may not be the best
approach in all cases. However, when minimizing computation duration, memory
usage, or code modification are primary concerns, PAL is an attractive option.

 6

5. References

1. Rice University. “pV3.” http://www.ruf.rice.edu/~behr/pv3.html,
25 August 2000.

2. Oak Ridge National Laboratory. “PVM: Parallel Virtual Machine.”
http://www.epm.ornl.gov/pvm, 25 August 2000.

3. Argonne National Laboratory. “The Message Passing Interface (MPI) Standard.”
http://www-unix.mcs.anl.gov/mpi/index.html, 25 August 2000.

4. GMD German National Research Center for Information
Technology. “MpCCI - Mesh-based Parallel Code Coupling Interface.”
http://www.mpcci.org, 25 August 2000.

5. SGI. “SGI TechPubs Library.” http://techpubs.sgi.com/library, 25 August 2000.

6. Rice University. “The TreadMarks Distributed Shared Memory (DSM) System.”
http://www.cs.rice.edu/~willy/TreadMarks/overview.html, 25 August 2000.

7. Clarke, J. A. “Emulating Shared Memory to Simplify Distributed-Memory
Programming.” IEEE Computational Science & Engineering, vol. 4, no. 1, pp. 55–62,
January–March 1997.

8. Clarke, J. A., C. E. Schmitt, and J. J. Hare. “Developing a Full Featured Application
From an Existing Code Using the Distributed Interactive Computing Environment.”
DOD HPCMP Users Group Conference Proceedings, June 1998.

 7

http://www.cs.rice.edu/

INTENTIONALLY LEFT BLANK.

 8

Appendix. Listing of PAL

#include "PALProcess.h"
#include "PALProcessGroup.h"
#include "PALGlobalVar.h"
#include <iostream.h>

const long ROUNDS = 5;

struct simple_mpi_process {
 int rank;
 long data_size;
 int *data;
};

// Reads data from a group of running simple_mpi executables.
void main() {
 // 1. Create a PALProcessGroup.
 PALProcessGroup group(PA_GROUP_MPI, "/test/simple_mpi");

 // Some simple_mpi global vars:
 // int Grab_MPI_size;
 // int Grab_MPI_rank;
 // int *Grab_data_p;
 // long Grab_data_size;

 // Set the names of the desired global variables.
 char
 *MPI_size_name = "Grab_MPI_size",
 *MPI_rank_name = "Grab_MPI_rank",
 *data_name = "Grab_data_p",
 *data_size_name = "Grab_data_size";

 // 2. Search for the desired global variables.
 const PALGlobalVar
 *MPI_size_var = group.FindGlobalVar(MPI_size_name),
 *MPI_rank_var = group.FindGlobalVar(MPI_rank_name),
 *data_var = group.FindGlobalVar(data_name),
 *data_size_var = group.FindGlobalVar(data_size_name);

 9

 // 3. If the program has found all the necessary global variables,
 // then get data from the processes.

 if ((MPI_size_var != 0) && (MPI_rank_var != 0) && (data_var != 0)
 && (data_size_var != 0))
 {
 // Get a handle to the MPI processes, in order to grab their data
 PALArrayList *processesList = group.GetProcesses();

 PALProcess **processes = (PALProcess **)processesList->ToArray();
 processes = (PALProcess **)processesList->ToArray();

 // Get the number of MPI processes.
 long MPI_size = processesList->Length();

 // Create an array to hold MPI_size simple_mpi_process structs.
 simple_mpi_process *simple_procs = new simple_mpi_process[MPI_size];

 for (long z = 0; z < MPI_size; z++) {
 MPI_rank_var->Read(processes[z], &simple_procs[z].rank,
 sizeof(int));
 data_size_var->Read(processes[z], &simple_procs[z].data_size,
 sizeof(long));
 simple_procs[z].data = new int[simple_procs[z].data_size];

 // Get data
 data_var->ReadIndirect(processes[z], simple_procs[z].data,
 sizeof(int) * simple_procs[z].data_size);
 }
 }
}

 10

INTENTIONALLY LEFT BLANK.

 12

 13

INTENTIONALLY LEFT BLANK.

 14

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

 2 DEFENSE TECHNICAL ABERDEEN PROVING GROUND
 INFORMATION CENTER
 DTIC OCA 2 DIR USARL
 8725 JOHN J KINGMAN RD AMSRL CI LP (BLDG 305)

 STE 0944
 FT BELVOIR VA 22060-6218

 1 COMMANDING GENERAL
 US ARMY MATERIEL CMD
 AMCRDA TF
 5001 EISENHOWER AVE
 ALEXANDRIA VA 22333-0001

 1 INST FOR ADVNCD TCHNLGY

THE UNIV OF TEXAS AT AUSTIN
 3925 W BRAKER LN STE 400
 AUSTIN TX 78759-5316

 1 US MILITARY ACADEMY
 MATH SCI CTR EXCELLENCE
 MADN MATH
 THAYER HALL
 WEST POINT NY 10996-1786

 1 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRL D
 DR D SMITH
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 1 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRL CS IS R
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 3 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRL CI OK TL
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 3 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRL CS IS T
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 1

INTENTIONALLY LEFT BLANK.

 2

	Acknowledgments
	Contents
	List of Tables
	1.Introduction
	2.Approaches
	2.1Sockets
	2.2Message Passing
	2.3Shared Memory
	2.4Distributed Shared Memory
	2.5Process Accessing With PAL

	3.Comparisons
	3.1General Application of Each Approach
	3.2Encapsulation
	3.3Extensibility
	3.4Intermediate Storage: Data Format, Memory Usage, and Memory Access
	3.5Computation Suspension: Data Integrity, Computation Duration, and Data Transfer Rates

	4.Conclusion
	5.References
	Appendix. Listing of PAL

